Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

Variants of the Chandy-Misra-Bryant Distributed
Discrete-Event Simulation Algorithm

by
Wen-King Su and Charles L. Seitz

Caltech Computer Science Technical Report
Caltech-CS-TR-88-22
19 December 1988

This paper is to be published in the Proceedings of the
1989 Distributed Simulation Conference,
which is part of the 1989 SCS Eastern Multiconference

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
19 DEC 1988 2. REPORT TYPE 19-12-1988 to 19-12-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Variants of teh Chandy-Misra-Bryant Distributed Discrete-Event
Simulation Algorithm

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 15
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Variants of the Chandy-Misra-Bryant Distributed
Discrete-Event Simulation Algorithm -

Wen-King Su and Charles L. Seitz
Department of Computer Science
California Institute of Technology

Caltech-CS-TR-88-22

1. Introduction

We have been using variants of the Chandy-Misra-Bryant (CMB) distributed discrete-
event simulation algorithm [1,2,3] since 1986 for a variety of simulation tasks [4].
The simulation programs run on multicomputers [5] (message-passing concurrent
computers), such as the Cosmic Cube, Intel iPSC, and Ametek Series 2010. The
excellent performance of these simulators led us to investigate a family of variants of
the basic CMB algorithm, including lazy message-sending, demand-driven operation
with backward demand messages, and adaptive adjustment of the parameters that
control the laziness.

These studies were also motivated by our interest in scheduling strategies for re-
active (message-driven) multiprocess programs [5,6,7], which are semantically similar
to discrete-event (event-driven) simulators. The simulator itself is implemented in
the reactive programming environment that we have developed for multicomputers:
the Cosmic Environment and the Reactive Kernel [8].

We performed the studies reported here using logic networks. Logic simulation
is expected to stress a distributed simulator, and is itself of practical interest. It
is easy to construct examples of logic networks with a diversity of behaviors and
structural difficulties, such as large fan-in and fan-out. Low-level logic elements such
as logic gates exhibit responses in which an input event may or may not influence the
outputs, depending on the internal state of the element and on the states of other
inputs; yet, they require very little computation to simulate their behavior. Thus,
the performance results shown later in this paper involve practically no cdmputation
other than the distributed simulation itself.

This paper is a- brief and preliminary report of the simulation algorithms and
performance results. A more definitive report will be found in the first author’s
forthcoming PhD thesis.

The research described in this paper was sponsored in part by the Defense
Advanced Research Projects Agency, DARPA Order number 6202, and monitored by
the Office of Naval Research under contract number N00014-87-K-0745; and in part
by grants from Intel Scientific Computers and Ametek Computer Research Division.

1

2. The CMB Simulation Framework

As usual, the system to be simulated is modeled as a set of communicating elements. A
CMB simulator can be implemented by coding the behavior of elements in processes
that communicate by messages. A message conveys both a time interval and any
events within this interval. A process reacts to the receipt of an input message by
updating its internal state, and, if outputs can be advanced in time, by sending
messages to connected processes. These messages may include null messages that
convey no events (changes in the state information), but serve only to advance the
simulation time.

It is easy to show that such a simulator is correct [3], in the sense that it computes
a possible behavior of the system being simulated. A sufficient condition for freedom
from deadlock in this eager message-sending mode is that there is a positive delay in
every circuit in the graph of element vertices and communication arcs. Intuitively,
it is the delay of the elements being simulated that permits the element simulators
to compute the outputs over an interval that is later than the time of the inputs, so
that time advances. Simulation time is determined locally, and may get as far out of
step at different elements as their causal relationships permit.

This conservative (also known as pessimistic) type of simulator is a concurrent
program that exploits the concurrency inherent in the system being simulated. In
practice, just as with other concurrent programs, if the number of concurrently
runnable processes substantially exceeds the number of processors, one can achieve
high utilization of concurrent resources. The speculative (also known as optimistic)
type of simulator attempts to exploit additional concurrency by computing beyond
the interval during which inputs are defined, at the risk of having to roll back if the
speculations prove incorrect. Such approaches are attractive for simulating systems
whose inherent concurrency is insufficient to keep concurrent resources busy, and in
which speculations can be made with high confidence. Our studies have concentrated
on conservative variants of the CMB algorithm.

The design of distributed simulation programs is also influenced by a characteristic
of the element simulators. In practice, an element simulator may or may not take as
long to process a null message as an event-containing message. For the simulation of
some systems, the processing of an event-containing message might involve a lengthy
simulation of a physical process, whereas the processing of a null message might be
very fast. Such simulations.do not seriously stress the distributed-simulation aspect
of the computation. However, for the simulation of systems of extremely simple
elements, such as logic gates, the time required to compute the output of the gate is
so small that it is comparable to the time required to process a null message.

Due to our interest in understanding the limits of event-driven distributed
simulation, and the implications for scheduling strategies for message-driven
multiprocess programs, our studies have concentrated on the case in which the time
required to process null messages is comparable to the time required to process event-
containing messages. It is straightforward to extrapolate the performance results for
this difficult case to situations in which null-message processing is relatively fast.

2

The principal trouble with naive implementations of conservative CMB distributed
simulation programs in any situation in which processing null messages is as costly as
processing event-containing messages is that the volume of null messages may greatly
exceed the number of event-containing messages. This difficultly is most evident when
simulating systems with many short-delay circuits that have relatively low levels of
activity.

In distributing the simulation, we seek to reduce the time required to complete
the computation; however, we have an immediate problem if the element simulators
must perform many more message-processing operations in the distributed simulation
than they would perform event-processing operations in a sequential simulation. The
centralized regulation of the advance of time achieved through the ordered event
list maintained by sequential simulation programs allows these simulators to invoke
element routines only once for each input event. The null messages inflate not only
the volume of messages the system must handle, but also the computational load.
Thus, if we are going to compete with the best sequential simulators, we must reduce
the volume of null messages.

3. Indefinite Lazy Message Sending

To reduce the volume of messages, we use various strategies to defer sending outputs
in the hope that the information can be packed into fewer messages. For example, one
of the most obvious schemes is to defer sending null messages, so that a series of null
messages and an event-containing message can be combined to form a single message
that spans a longer interval. Since output events are often triggered only by input
events, deferring the delivery of preceeding null messages is less likely to hamper the
progress of the destination element than deferring the delivery of event-containing
messages.

The first problem that must be addressed in employing such strategies is deadlock.
When element simulators defer sending output messages, they may cyclically deny
themselves input messages, leading to deadlock. All of our simulators have employed
a technique of indefinite lazy message sending to permit arbitrary strategies for
deferring message sending while still avoiding deadlock. The following is an idealized
inner loop of the simulator, shown in the C programming language:

while(1)
if (p = zrecv())
simulate_and_optionally_send_messages(p);
else
take_other_action();

The function xrecv returns a pointer, p, that points to a message for the simulation
process if a message has been received. The simulator then dispatches to the
appropriate element simulator, and may either send or queue the outputs that the
element simulator produces. If there is no message in the node’s receive queue, the
pointer returned is a NULL (0) pointer. In this case, the simulator takes other

3

action to break any possible deadlock. For a source-driven simulator, it selects a
queued output to send as a message. For a demand-driven simulator, it selects a
blocked element, and sends a demand message to its predecessor to request that
queued outputs be sent. A deadlock in deferring messages cannot occur without
“starving” a node of messages. When this situation is detected by xrecv returning a
NULL pointer, the resulting action breaks the potential deadlock.

Within this indefinite lazy message-sending framework, we can experiment with
any scheme for deferring and combining messages without concern for deadlock. A
message is free to carry any number of events, and an element is free to defer message
sending on any basis.

4. Variant Algorithms

We have experimented with many CMB variants; in the interests of comprehension, we
will describe the operation and report the performance of six that are representative
of the range of possibilities that we have studied:

A Eager message sending: This basic form of CMB serves as a baseline for comparison
against the variants.

B Eager events, lazy null messages: Null outputs are queued. Event outputs,
combined with any queued null outputs, are sent immediately. When xrecv returns
a NULL pointer, the null output that extends to the earliest time is sent as a null
message.

C Indefinite-lazy, single-event: All output from element simulators is queued. The
output queues may contain multiple events. Messages are sent only when xrecv
returns a NULL pointer. The output queue that extends to the earliest time is
selected to generate a message up to the first event, if any, or a null message to
the end of the interval.

D Indefinite-lazy, multiple-event: This scheme is a slight variation on C, motivated
by characteristics of multicomputer message systems that make it economical to
pack multiple events into fewer messages. All output from element simulators is
queued. The output queues may contain multiple events. When xrecv returns a
NULL pointer, the output queue that extends to the earliest time is selected to
generate a message up to the last queued event, if any, or a null message to the end
of the interval. However, to allow a direct comparison with sequential simulators,
events are processed singly.

E Demand-driven: Although we usually think of simulation as source driven from
inputs, one can equally well organize the simulation as demand driven from
outputs. In the pure demand-driven form, all output from element simulators
is queued. When xsend returns a NULL pointer, the input that lags furthest
behind selects the destination for a demand message. Upon receipt of a demand
message, if the output queue is not empty, the simulator sends all the information
in the output queue; if the output queue is empty, the simulator generates another
demand message to the source of lagging input to this element.

4

F' Demand-driven, adaptive: Demand messages single out critical paths in a
simulation. In an adaptive form of demand-driven simulation, a threshold is
associated with each communication path. Qutputs of element simulators are
queued only up to the threshold; when the threshold is exceeded, the contents
of the queue are sent as a message. Demand messages operate as in E, but also
cause the threshold to be decreased. In the cases shown below, the threshold is
halved. The simulator is accordingly able to adapt itself to the characteristics of
the system being simulated.

Although these variants are described here in terms of message passing, the
same variants also appear as different scheduling strategies in shared-memory
implementations.

5. Experimental Method

In common with other highly evolved message-passing programs, the simulator is
implemented with one simulation process per multicomputer node (or, in the Cosmic
Environment, with one simulation process per host computer or per processor in a
multiprocessor).

Basis of comparison: Although execution time is one of the most natural bases
of comparison between any two programs that perform the same function, and is
used below to illustrate the performance of our distributed simulators on different
commercial multicomputers, execution time on these concurrent computers depends
both on the algorithm and on the characteristics of the particular computer. When
we wish to isolate the characteristics of the algorithm from those of the computer,
the instrumented simulator operates as a simulator within a simulator. Execution
time is then measured in a unit called a sweep [5, 6], which corresponds here to a
fixed time required to call an element once. The time required for other operations,
such as sending a message, can be set to a particular number of sweeps. Normally,
a message sent by one node in one sweep is available in the destination node at the
next sweep. However, to test the sensitivity of the algorithms to message latency, we
can also set the latency to larger values.

Instrumentation: The simulator is a reactive program written in C, and is
instrumented to function in two operational modes. In the sweep mode, a
multicomputer-emulation program runs a simulation of a multicomputer; this in turn
runs the reactive simulators. Time is measured in sweep units; on each sweep, each
node is allowed to make one element call. In the real mode, the simulator runs directly
on the multicomputer. There is one copy of the simulator process in each node, and
each simulator process runs a subset of the elements as embedded reactive processes.

Each node runs at its own pace, and execution time is measured with UNIX’s real-
time clock.

6. Experimental Results

Performance measurements have been made on a variety of logic networks, including
those that are representative of networks found in computers and VLSI chips, and

5

those that are designed specifically to test or to stress the simulator. Six different
network types, each in several sizes up to 4000 logic gates, have been the principal
vehicles for these experiments. A larger variation in performance is observed among
networks with different characteristics than between algorithm variants.

Multiplier ezample: The parallel multiplier is a good example of an ordinary logic
network. The 14x14 multiplier used in several experiments employs 1376 logic gates
to generate the 28-bit product of two 14-bit binary inputs. The multiplier network
contains only limited concurrency, and does not contain tight circuits that give the
simulator artificial performance boosts or troubles, depending on element distribution.
It also contains moderately high fan-out in the multiplier and multiplicand lines; this
puts pressure on the message system. In all fairness, the distributed simulation of
this multiplier network is not expected to do too badly nor too well.

For the simulation, the most-significant bit of the product is connected back to the
multiplier input via an inverting delay. The delay is such that the multiplier reaches
a stable state before the multiplier input changes. The multiplicand input is set to a
value that causes the circuit to oscillate. A trace of the product outputs shows that
the simulator and the circuit are running correctly.

Measurements in the sweep mode: The plot in Figure 1 portrays in a log-log format
the sweep count in the sweep mode versus the number of nodes, N, for the simulation
of the 14x14 multiplier network under all six CMB variants. It is not useful to
continue the plot beyond 2'* nodes, since at this point there are as many nodes as
simulated gates. The placement of elements in nodes for these trials is balanced but
random.

Each horizontal division represents a factor of two in resources; each vertical
division represents a factor of two in sweep count or time. We have found this format
(¢f [3]) for portraying the performance of concurrent programs to be more useful than
“speedup” graphs, for two reasons. First, we can observe the factor by which the
execution time is reduced as resources are increased over very wide ranges. Second,
since the ordinate is a physical measure, time or sweep count, we can compare different
algorithms directly. For example, in addition to the plots of the sweep counts of the
CMB variants, the heavy horizontal line represents the number of sweeps a sequential
simulator requires for this same simulation.

The first remarkable characteristic of these performance measurements is that they
are so similar across this class of variant algorithms. Algorithms A, E, and F produce
more messages than B, C, and D, but in this mode in which messages are free but
element invocations are expensive, there is little difference between the variants. The
performance under sweep-mode execution exposes the intrinsic characteristics of the
algorithm, and is not related to such multicomputer characteristics as the relationship
between node computing time and message latency.

The gross characteristics of these curves are similar to those of other concurrent
programs [5], and are quite understandable and predictable.

We observe at log, N=0 (1 node) that all of the CMB variants are somewhat
inefficient in comparison with the sequential event-driven simulator. For this

6

multiplier example, the null messages inflate the number of element invocations by a
factor of 2-5 times; this is consistent with the 1-2.5-octave increase in sweep count
over that of the sequential simulator. The null messages also inflate the concurrency
over that which is intrinsic to the system being simulated. We shall refer to this
inflation in the number of element invocations as the overhead of distributing the
simulation. If the time required to process a null message were smaller than the
time required to process an event-containing message, the overhead would be reduced
proportionately.

logs(sweeps)
20
19 K

18 e
17
16
15
14
13
12 R

: N
p-)
10 \

sequential simulator

VY24
V4

9
0 1 23 45 6 7 8 9 1011
logz(nodes)

Fig 1: A 1376-gate multiplier, sweep mode

The performance is then divided roughly into two regimes, the first regime being
one of near-linear speedup in N for the first 7-8 octaves, and the second regime being
one of diminishing returns in N as the computing time approaches an asymptotic
mimimum value. In the linear speedup regime, these simulators nearly halve the
sweep count with each doubling of resources until limiting effects are reached. Load
balance is assured by the weak law of large numbers when there are many elements
per node. While each node has a sufficiently large pool of work, node utilization
remains high. The simulators approach asymptotic minimal time as they exhaust the
available concurrency in the system being simulated. The gradual “knee” of the curve
originates from progressively less-effective statistical load balancing as the number of
elements per node diminishes with larger N.

Additional statistics have been collected to measure other effects. For example,
in the linear-speedup regime, when there are many logic elements per node, the
simulators are quite insensitive to message latency. When there are few elements per
node, the performance begins to deterioriate as message latency is increased. These

7

effects will be evident in the measurements performed on real multicomputers.

Measurements on real multicomputers: The results of simulating the same 1376-
gate multiplier network on a 16-node iPSC/2 is shown in Figure 2, and on a 128-node
iPSC/1 for variants B, C, and D is shown in Figure 3. The iPSC /2 is &6 times faster
per node than the iPSC/1, so the time scales do not correspond. This simulation
will not run on an iPSC/1 for N < 4 because the data and message queues for an
increased number of logic elements per node will not fit in the node memory. Due to
the same limitations of the iPSC/1 message system, neither the demand-driven nor
the eager-message-sending simulation variants will run in most machine sizes. This
choice of performance data is dictated by the desire to show performance results over
the largest range of N possible with the machines that are currently operated by
our research group. Results essentially identical to those shown in Figure 2 are also
obtained on a 16-node Ametek Series 2010.

loga(seconds)

10

tial simulator

QS

0 1 2 3 4) 6 7
logs(nodes)

Fig 2: A 1376-gate multiplier for 40us on an iPSC/2

log,(seconds)
10

9 sequential simulator

Yéd
Qb

0 1 2 3 4) 6 7
logs(nodes)

Fig 3: A 1376-gate multiplier for 40us on an iPSC/1

8

The simulation of this network for 2° < N < 27 is in the relatively uninteresting
(but useful) linear-speedup regime, with some limiting effects starting to be seen in
Figure 3 at N=2". The number of gates being simulated per node is sufficiently high
to keep the node utilization high and the sensitivity to message latency low.

In order to exhibit the performance results in the more interesting (but less useful)
diminishing-returns regime, we have scaled the network down to a 4-bit multiplier
with 116 logic gates. The peformance on an Intel iPSC/2 up to 16 nodes is shown
in Figure 4, and on an Intel iPSC/1 up to 128 nodes is shown in Figure 5. This
network is small enough to exhibit interesting limiting effects as the simulation
is increasingly distributed. The sublinear speedup is due to message latency in
inter-node communications, increased null messages as the simulation is increasingly
distributed, and load imbalance. The asymptotic time is limited by the message
latency rather than by the available concurrency. In particular, Figure 5 shows that
the asymptotic execution time of algorithm A, which is not very economical in its use

of messages, is more than a factor of two worse than the asymptotic execution time
of variants B, C, and D.

log2(second8)
8
7 N
6 TN\

%Men’cial simylator

£\a:\§§

0 1 2 3 4 5 6 7
logs(nodes)

Fig 4: A 116-gate multiplier for 100us on an iPSC/2

logs(seconds)
10
.
9
8 ' \\&;_sequential simulator
\\\ TT— 4
7 AN
SR g g
6 B

0 1 2 3 4 3 6 7
loga(nodes)

Fig 5: A 116-gate multiplier for 100us on an iPSC/1

9

7. Hybrid CMB Variants

Although the CMB variants exhibit good speedup over wide ranges of N, speedup
measures only the performance of the algorithm relative to less-distributed instances
of itself. In comparison with the sequential simulator, the distributed simulators must
pay the overhead of processing null messages. If the elements used in a simulation
are such that the time required to process null messages is considerably less than
the time to process event-containing messages, these conservative CMB variants will
provide excellent performance and efficiency.

However, if the time required to process null messages is comparable to the time
required to process event-containing messages, as it is for logic simulation, this
overhead makes the CMB algorithm and its variants problematic for simulations on
parallel computers in which N is small. What might be done to extend the CMB
approach into this difficult small- NV range? '

A component of the overhead that cannot be eliminated within the CMB
framework, in which elements are independent processes, is the null messages used
to force progress in cycles of idling elements. However, we can take advantage of
multiple elements sharing the same node by lumping members of low-latency, low-
activity cycles, such as the gates that form a latch, into macro elements, and applying
sequential simulation to them internally. The null-message-processing overhead for
such cycles is eliminated at the cost of reduced concurrency for their members.

In this type of hybrid CMB variant simulator, all elements in each node are
combined into one macro element, which is simulated internally with a conventional,
ordered-event-list, sequential simulator. These sequential simulators are tied together
externally with one of the CMB variant simulators. Since there is only one macro
element per node, the hybrid variants are identical at N=1 to a sequential simulator.
As N increases, however, more cycles are partitioned over multiple nodes, and each
hybrid variant eventually converges with its corresponding CMB variant.

Measurements in sweep mode: Figure 6 shows the performance results for the CMB
variants simulating a ring of 28 self-timed FIFO units. Each FIFO unit contains one
FIFO-control cell and eight register cells, implemented with a total of 1067 logic gates.
The FIFO ring is 50% full, holding 14 alternating 1- and 0-bytes. The overhead at
N=1is caused by the idling of the cross-coupled NAND latches in the registers and
the FIFO controls. The CMB variants show a good speedup with increased N. Except
for the initial overhead, the performance of all of the CMB variants is excellent.

Figure 7 shows the simulation results for the same circuit using the hybrid CMB
variants with an element-distribution method that tends to place elements of each
cycle in the same node.

10

logs(sweeps)
19

18 ,,,,,,
17 [

NN sequential simulator
16 NN
15
14 -
13
12

11
10

0 .
01 2 3 45 6 7 8 9 10 11
logy(nodes)

Fig 6: FIFO ring, non-hybrid simulator, emulation mode

logz(sweeps)
19
18
17 sequential sirnulator
16 ‘“"T\
15 ‘éafj\\
14 \\l:}\\\b
13 \\‘\ \\ \
12 \ \“\~\
\‘\‘ \\
11 g
13 . “:\:\“Qg‘i
01 2 3 45 6 7 8 9 1011
loga(nodes)

Fig 7: FIFO ring, hybrid simulator, emulation mode

Although the hybrid simulator exhibits a generally decreasing sweep count with
increasing N, and extremely good small-N performance for the demand-driven variant
E, less desirable behaviors have been observed for the hybrid variants. In particular,
if the elements are not properly distributed, or cannot be properly distributed, the
simulation time may increase starting at N=2 before starting to decrease. This effect
is the result of cycles being broken and scattered over multiple nodes, so that it is the
CMB rather than the sequential algorithm that dominates the execution time. Figure

11

8 illustrates the performance of the simulator for the same circuit used in Figures 6
and 7, but with random placement of the elements across the nodes.

logy(sweeps)
19

18 |/
7 £ \\

N sequential simulator

AN

16
15 %‘%
a N
13 AN

11
10

P

//

w4
W
///

9
01 2 3 45 6 7 8 9 1011
logs(nodes)

Fig 8: FIFO ring, hybrid simulator, randomized

Some programming short-cuts were used to produce these sweep-mode perfor-
mance measures for the hybrid variants without implementing a regular sequential
simulator; thus, we are not able to include corresponding performance graphs for real
multicomputers. However, the instrumentation of the hybrid sweep-mode simulations,
together with the performance parameters of second-generation multicomputers such
as the Intel iPSC/2 and Ametek Series 2010, indicate that the performance on real
multicomputers will be essentially similar to that in the sweep-mode. We are cur-
rently implementing distributed simulation programs and instrumentation to run the
hybrid CMB variants on real multicomputers.

8. Conclusions

We selected logic simulation for these experiments because we wished to examine
the limits of the applicability of the conservative CMB algorithm and its variants.
Simulating the behavior of relatively simple elements that have a high degree of
connectivity was expected to be a difficult case for distributed simulation. Indeed, the
performance results presented here have been much more revealing of the capabilities
and limitations of the distributed discrete-event simulation algorithms than earlier
simulations that we performed of systems such as multicomputer message networks.

The reader should accordingly be cautious about drawing negative conclusions
about the CMB framework from our comparisons of the performance of the CMB
variants with the ordered-event-list sequential simulator. For objects of distributed
simulation that are less demanding than logic simulation, such as systems in which

12

processing null messages is much faster than processing event-containing messages,

the overhead is proportionately scaled down, and the following general conclusions
remain valid:

1. Selected CMB varients exhibit excellent speedup over a wide range of IV, limited
eventually only by the concurrency of the system being simulated.

2. The CMB variants presented here, all based on the indefinite-lazy-message-sending
framework, provide a useful improvement over the basic eager-message-sending

CMB algorithm.

3. The hybrid CMB variants offer promise of efficient distributed simulation on small-
N concurrent computers.

In some respects, the CMB and sequential algorithms make poor comparison
subjects because these two algorithms represent relatively orthogonal optimizations
in the basic task of simulation. While the execution time of the sequential simulator
is sensitive only to the activity level of the circuit, the execution time for the fully
distributed CMB algorithm is sensitive only to the structure of the circuit. In the
FIFO-ring example, we can use more data bytes, fewer data bytes, or a different
set of data bytes, and shift the sequential simulator’s execution time proportionately
without significantly changing the CMB variants’ curves. Similarly, we can shift the
CMB variants’ curves without affecting the execution time of the sequential algorithm
by varying the delay of the gates in the latches.

The hybrid CMB variants attempt to combine the best aspects of the sequential
and CMB algorithms by allowing the sequential simulator to dominate when N is
small, and the CMB variants to dominate when N is large. This approach may or may
not produce a favorable result, depending on whether the elements can be properly
distributed. More research needs to be done in the area of element distribution and
its effect on the hybrid variants.

9. Acknowledgment

We very much appreciate the constructive suggestions, ideas, and encouragement
that we have received from K. Mani Chandy.

10. References

[1] K. Mani Chandy and Jayadev Misra, “Asynchronous Distributed Simulation Via,
a Sequence of Parallel Computations,” CACM 24(4), pp 198-205, April 1981.

[2] Randal E. Bryant, “Simulation of Packet Communication Architecture Computer
Systems,” MIT-LCS-TR-188, Massachusetts Institute of Technology, 1977.

[3] Jayadev Misra, “Distributed Discrete-Event Simulation,” Computing Surveys
18(1), pp 39-65, March 1986.

[4] “Submicron Systems Architecture,” Semiannual reports to DARPA, Caltech
Computer Science Technical Reports [5220:TR:86] and [5235:TR:86], 1986.

13

[5] William C. Athas and Charles L. Seitz, “Multicomputers: Message-Passing
Concurrent Computers,” IEEE Computer 21(8), pp 9-24, August 1988.

[6] William C. Athas, “Fine Grain Concurrent Computation,” Caltech Computer
Science Technical Report (PhD thesis) [5242:TR:87], May 1987.

[7] William J. Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer
Academic Publishers, 1987.

[8] Charles L. Seitz, Jakov Seizovic, and Wen-King Su, “The C Programmer’s Ab-

breviated Guide to Multicomputer Programming,” Caltech-CS-TR-88-1, J anuary
1988.

14

